
Eur. Phys. J. B 18, 421–428 (2000) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. An effective intra- and inter-ladder charge-spin Hamiltonian for the quarter-filled ladder com-
pound α′-NaV2O5 has been derived by using the standard canonical transformation method. In the deriva-
tion, it is clear that a finite inter-site Coulomb repulsion is needed to get a meaningful result otherwise the
perturbation becomes ill-defined. Various limiting cases depending on the values of the model parameters
have been analyzed in detail and the effective exchange couplings are estimated. We find that the effective
intra-ladder exchange may become ferromagnetic for the case of zig-zag charge ordering in a purely elec-
tronic model. We estimate the magnitude of the effective inter-rung Coulomb repulsion in a ladder and
find it to be about one-order of magnitude too small in order to stabilize charge-ordering.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 75.30.Et Exchange and superexchange
interactions – 64.60.-i General studies of phase transitions

1 Introduction

Low-dimensional quantum spin systems have received con-
siderable attention from both theoretical as well as exper-
imental point of view due to their unconventional physical
properties. α′-NaV2O5, which was believed to be a low-
dimensional inorganic Spin-Peierls (SP) compound [1] has
recently been under intense investigation. α′-NaV2O5 is
an insulator and its magnetic susceptibility data fits very
well to the one-dimensional Heisenberg chain model yield-
ing an exchange interaction J = 440 and 560 K for temper-
atures below and above the spin-Peierls transition temper-
ature TSP (TSP ≈ 34 K) respectively [1,2]. For T ≤ TSP,
an isotropic drop in the susceptibility corresponding to a
singlet-triplet gap of ∆SP = 85 K has been observed.

Recent X-ray structure data analysis [3,4] at room
temperature disfavours the previously reported non-
centrosymmetric structure [5] (C7

2v − P21mn space group)
where V+4 spin-1/2 ions form a one-dimensional
Heisenberg chain, running along the crystallographic b-
direction, separated by chains of V+5 spin-zero ions. But
the evidence for the centrosymmetric point group [4]
(D13

2h − Pmmn) leads to only one type of V-site with a
formal valence +4.5 in this compound. The V-sites then
form a quarter-filled ladder, running along the b-axis with
the rungs along the crystallographic a-axis. In the quarter-
filled scenario, the electron spins are not localized at V-
ions rather distributed over a V-O-V molecule which has
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found support by NMR [6] as well as Raman measure-
ments [7].

The nature of the state below TSP is presently un-
der intense investigation. Isobe and Ueda [1] originally
proposed a usual spin-Peierls scenario but the detection
of two inequivalent V-sites in NMR [6] indicates a more
complicated scenario and the possibility of charge order-
ing. Several types of charge ordering, including ‘in-line’ [8]
and ‘zig-zag’ [9–11] ordering has been proposed, but only
the zig-zag type of ordering has been found to be in agree-
ment with neutron scattering [11,12] and anomalous X-ray
scattering [13].

Recent determinations of the low-temperature crystal
structure found the space group Fmm2 [14,15] and pro-
posed the existence of three inequivalent V-ions below
TSP [14–16]. This scenario was investigated by DMRG
(density-matrix renormalization group) and a cluster-
operator theory [17] and a strong disagreement with neu-
tron scattering data [12] was found. Ohama et al. recently
observed [18] that the apparent contradiction between
crystallography (three inequivalent V-ions below TSP) and
NMR (two inequivalent V-ions below TSP) could be re-
solved when one considers possible subgroups of the orig-
inally proposed space group Fmm2 [18].

The crystal structure of α′-NaV2O5 at T > TSP

is orthorhombic (a = 11.318 Å, b = 3.611 Å, c =
4.797 Å) and consists of double chains of edge-sharing
distorted tetragonal VO5 pyramids running along the or-
thorhombic b-axis. These double chains are linked together
via common corners of the pyramids and form layers.
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These are stacked along c-direction with no-direct V-O-V
links. The Na atoms are located in between these layers.
For the orbitals of the d-electrons at V-sites, those with
dxy symmetry are suggested to be the relevant ones above
and below TSP [4]. Due to the special orbital structure,
the hopping amplitudes ta and tb are much larger than
the inter-ladder hopping tab, ta and tb being the hopping
amplitudes along the rung and the ladder direction re-
spectively (ta ≈ 0.38 eV, tb ≈ 0.17 eV, tab ≈ 0.012 eV).
Since α′-NaV2O5 is an insulator, it has been assumed
that the on-site Coulomb repulsion U is sufficiently large
in comparison to the hopping amplitudes (U ≈ 2.8 eV
from DFT calculation [4]). Moreover, one has to intro-
duce the inter-site Coulomb repulsions, Va, Vb, Vab to ob-
tain the required charge ordering. In fact, it has been
shown in a Hartree-Fock calculation [9] that the condi-
tion U > Va, Vb, Vab > ta, tb, tab must be fulfilled in order
to achieve a complete charge ordering. We consider this
and other limits in the present paper.

In the present work, we take into account the charge
dynamics to obtain an effective low energy Hamiltonian
for α′-NaV2O5. One starts from a pure electronic Hamil-
tonian, which includes electron hopping in and between
the ladders as well as the on-site and inter-site Coulomb
interactions. The on-site Coulomb interaction U is taken
to be the largest parameter in our calculation. Since α′-
NaV2O5 is an insulator and we work at quarter-filling,
one can project on a subspace of states which contains
one electron per rung. Therefore, it is convenient to use
an Ising pseudo-spin variable τz = ±1/2 corresponding to
a rung with an electron on the right/left site of the rung.
This is in the same spirit of Kugel and Khomskii’s treat-
ment of the orbital degeneracy problem in Jahn-Teller sys-
tems [19]. The spin and the pseudo-spin operators can be
written as,

Sz =
1
2

∑
σ

σ(R†σRσ + L†σLσ),

S+ = R†↑R↓ + L†↑L↓,

S− = R†↓R↑ + L†↓L↑, (1)

τz =
1
2

∑
σ

(R†σRσ − L†σLσ),

τ+ =
∑
σ

R†σLσ,

τ− =
∑
σ

L†σRσ, (2)

which for example yields, R†i,↑Li,↑ = τ+
i (1

2 + Szi ),
R†i,↑Li,↓ = τ+

i S
+
i , L†i,↓Li,↑ = (1

2 − τzi )S−i , etc., where
τ± = τx + iτy , S± = Sx + iSy and R†i,σ(L†i,σ) are the
creation operator of an electron with spin σ on the right
(left) site of the ith rung of the ladder. In (1) and (2) we
have suppressed the site-indices.

t ,Va a

t ,Va a

tb b,V’

bb

V’’
b

Fig. 1. Schematic structure of α′-NaV2O5 where the open
circles stands for the vanadium sites. Different parameters are
also shown.

2 Intra-ladder exchange

Let us start with an electronic Hamiltonian for the
quarter-filled ladder (see Fig. 1), which can be written
as, H = H0 +H ′0 +HI, with

H0 = ta
∑
i,σ

(R†i,σLi,σ + h.c.)

+ U
∑
i

(ni,R↑ni,R,↓ + ni,L,↑ni,L,↓)

+ Va
∑
i,σ,σ′

ni,R,σni,L,σ′ , (3)

H ′0 = V ′b
∑
i,σ,σ′

(ni,L,σni+1,L,σ′ + ni,R,σni+1,R,σ′)

+ V ′′b
∑
i,σ,σ′

(ni,L,σni+1,R,σ′ + ni,R,σni+1,L,σ′)

+ Vab
∑

〈m,n〉,σ,σ′
nm,R,σnn,L,σ′ , (4)

HI = tb
∑
i,σ

(R†i,σRi+1,σ + L†i,σLi+1,σ + h.c.)

+ tab
∑
〈m,n〉,σ

(R†m,σLn,σ + L†n,σRm,σ), (5)

where ta, U and Va are the hopping integral, on-site and
the inter-site Coulomb repulsion in a rung respectively. tb,
V ′b and V ′′b are the hopping integral and the Coulomb in-
teraction in between rungs in a ladder, whereas tab and Vab
are the inter-ladder hopping and the Coulomb interaction
respectively. ni,R,σ(ni,L,σ) is the electron density operator
with spin σ in the right (left) site of ith rung and 〈m,n〉
denotes the pair of rungs m and n on adjacent ladders.

We estimate the parameters of the inter-site
Coulomb repulsion using a screened Coulomb repulsion,
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V = e2/(εd), where ε is the dielectric constant and d the
distance between the respective vanadium atoms. The dis-
tance in between two V-ions along the rung and the leg of
the ladder (a- and b-directions) are 3.502 Å and 3.611 Å.
The dielectric constant is ε = 11 from microwave and far
infrared measurements [21]. One obtains, Va = 0.3738 eV
and V ′b = 0.3625 eV. The diagonal V-V distance in the
b-direction in the ladder is 5.030 Å, which implies, V ′′b =
0.2643 eV. It will be clear from the later discussion that
the effective inter-rung Coulomb repulsion Vb is given by
the difference between V ′b and V ′′b , i.e. Vb = V ′b−V ′′b , which
comes out to be small (Vb = 0.1023 eV) compared to Va.
Next, Vab = 0.4305 eV, as the V-V inter-ladder distance
is 3.0401 Å. Note that Vab is slightly higher than Va and
nearly four times higher than Vb.

In order to develop a perturbation expansion, we start
by considering the case of a single two-leg quarter-filled
ladder. We assume that the ground-state of H is domi-
nated by states with one electron per rung. Our perturba-
tion expansion will be valid therefore in appropriate pa-
rameter regimes. The one-electron eigenstates of H0 for
a single rung consist of bonding and anti-bonding wave
functions, which we denote as a†|0〉 = 1√

2
(R† − L†)|0〉

and s†|0〉 = 1√
2
(R† + L†)|0〉, with eigenenergies −ta and

+tb respectively. Now let us consider the coupling of the
rungs along the legs described by the first term in the
Hamiltonian HI. In order to obtain a coupling between
the pseudo-spin and the spin variables, we use here the
standard canonical transformation method [20], which is
given by,

Heff = eiSHe−iS , (6)

where the operator S is determined from the condition

HI + i[S,H0] = 0, (7)

which turns out to be

Ŝ =
∑
n,n′

i
(E′n −En)

|n〉〈n|HI|n′〉〈n′|. (8)

Thus, the effective Hamiltonian can be written as,

Heff = H0 +H ′0 −
1
2

∑
n,n′,n′′

(
1

E′n −En
+

1
E′n − E′′n

)
× |n〉〈n|HI|n′〉〈n′|HI|n′′〉〈n′′|, (9)

where the initial and the final states |n′′〉 and |n〉 are
the two-rung states, i.e., all possible combinations of the
bonding and the anti-bonding states between the near-
est neighbour rungs. In the present case, there are sixteen
possible such states which are the following:

s†i,σs
†
j,σ′ |0〉, s

†
i,σa
†
j,σ′ |0〉, a

†
i,σs
†
j,σ′ |0〉, a

†
i,σa
†
j,σ′ |0〉, (10)

with σ, σ′ =↑, ↓. The six intermediate states |n′〉 which
are the two-particle excited states in a rung, have to
be antisymmetric under the exchange of both spin and

pseudo-spin coordinates, in accordance with the Pauli
principle. Thus, we have two sectors for the excited
states depending on the total and the z-component of
spin as well as the pseudo-spin quantum numbers which
are labeled as, |S, Sz; τ, τz〉. Hence, the states involved
are, |0, 0; 1, 1〉 = R†i,↑R

†
i,↓|0〉, |0, 0; 1,−1〉 = L†i,↑L

†
i,↓|0〉,

|0, 0; 1, 0〉 = 1√
2
(R†i,↑L

†
i,↓−R

†
i,↓L

†
i,↑)|0〉 and |1, 1; 0, 0〉 =

R†i,↑L
†
i,↑|0〉, |1,−1; 0, 0〉 = R†i,↓L

†
i,↓|0〉, |1, 0; 0, 0〉 =

1√
2
(R†i,↑L

†
i,↓ + R†i,↓L

†
i,↑)|0〉. The eigenenergies of the ex-

cited states in the large U limit are Va for the spin-triplet
states |1, Sz; 0, 0〉 (Sz = −1, 0,+1). For the spin-singlets,
the eigenenergies are U ′ for 1√

2
(|0, 0; 1, 1〉 + |0, 0; 1,−1〉)

(symmetric), U for 1√
2
(|0, 0; 1, 1〉− |0, 0; 1,−1〉) (antisym-

metric) and V ′a for |0, 0; 1, 0〉, with U ′ ≈ U + 4t2a
U−Va and

V ′a ≈ Va − 4t2a
U−Va . After some lengthy but straightforward

algebra and in the case of large but finite U , the total
effective Hamiltonian can be written as,

Heff = H0 +H ′0 +H intra
eff +H inter

eff , (11)

where H intra
eff is the effective intra-ladder Hamiltonian

which one can express as, H intra
eff = H

(t)
eff +H

(s)
eff , with H(t)

eff

and H
(s)
eff being the contribution due to the intermediate

spin-triplet and spin-singlet states respectively. H inter
eff is

the effective inter-ladder Hamiltonian which can be de-
rived in a similar way and will be discussed in the next
section. In terms of the pseudo-spin and spin variables, the
unperturbed Hamiltonian H0 and H ′0 can be expressed as,

H0 = 2ta
∑
i

τxi , (12)

H ′0 = 2(V ′b − V ′′b )
∑
i

(
1
4

+ τzi τ
z
i+1

)
+ N V ′′b

+ Vab
∑
〈m,n〉

(
1
4
− τzmτzn +

τzm − τzn
2

)
, (13)

where N is the number of rungs. In a similar way, the
effective Hamiltonian H

(t)
eff can be written as,

H
(t)
eff = −4t2b

Va

∑
i

(
1
4
− τ i · τ i+1

)(
3
4

+ Si · Si+1

)
. (14)

It is obvious from the above expression that H(t)
eff is inde-

pendent of the Coulomb correlation energy U . This is due
to the fact that while deriving this effective Hamiltonian
we have used the eigenenergies for the excited states
which happen to be Va for this case. Since the effec-
tive Hamiltonian H(s)

eff is obtained due to the contribution
from the same intermediate states |n′〉 and different ini-
tial and final states |n〉 and |n′′〉, it can be written as,
H

(s)
eff = H

(s1)
eff + H

(s2)
eff + H

(s3)
eff (which are the contribu-

tions due to the antisymmetric, symmetric and |0, 0; 1, 0〉
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intermediate states), with

H
(s1)
eff = −4t2b

U

∑
i

(
1
4
− 2τxi τ

x
i+1 + τ i · τ i+1

)
×
(

1
4
− Si · Si+1

)
, (15)

H
(s2)
eff =− 2t2b

U ′ − 2ta

×
∑
i

(
1
4

+
τxi + τxi+1

2
− 2τyi τ

y
i+1 + τ i · τ i+1

)
×
(

1
4
− Si · Si+1

)
− 2t2b
U ′ + 2ta

×
∑
i

(
1
4
−
τxi + τxi+1

2
− 2τyi τ

y
i+1 + τ i · τ i+1

)
×
(

1
4
− Si · Si+1

)
, (16)

H
(s3)
eff =− 2t2b

V ′a − 2ta

×
∑
i

(
1
4

+
τxi + τxi+1

2
− 2τzi τ

z
i+1 + τ i · τ i+1

)
×
(

1
4
− Si · Si+1

)
− 2t2b
V ′a + 2ta

×
∑
i

(
1
4
−
τxi + τxi+1

2
− 2τzi τ

z
i+1 + τ i · τ i+1

)
×
(

1
4
− Si · Si+1

)
. (17)

It should be noted here that one gets a non-zero contri-
bution to H(t)

eff and H(s)
eff even if U =∞ which will be dis-

cussed below. Moreover, it is obvious from the expression
for H(t)

eff (see Eq. (14)) that a finite Va is indeed needed
to get a meaningful result otherwise the perturbation be-
comes ill-defined for Va = 0.

Limiting cases and discussion

Case I: ta = 0: This limit implies U ′ = U and V ′a = Va
and thus, H(s1)

eff and H
(s2)
eff can be combined together to

yield,

H
(s1)
eff +H

(s2)
eff = −8t2b

U

∑
i

(
1
4

+ τzi τ
z
i+1

)(
1
4
− Si · Si+1

)
,

(18)

whereas the effective Hamiltonian H(s3)
eff gets reduced to,

H
(s3)
eff = −4t2b

Va

∑
i

(
1
4

+ τ i · τ i+1 − 2τzi τ
z
i+1

)
×
(

1
4
− Si · Si+1

)
. (19)

(a) (b) (c)

Fig. 2. Possible (a) disordered and (b), (c) completely charge
ordered (zig-zag) configurations in a single ladder. The filled,
shaded and open circles denote V +4, V +4.5 and V +5 sites re-
spectively.

Since H
(t)
eff neither depends on ta nor on U , it doesn’t

get affected in the above limiting case and the same is
true for the other cases considered below. The effective
Hamiltonian derived by Thalmeier and Fulde [8] corre-
sponds to equation (18).

Case II: ta = 0, U = ∞: In this limit, which also
corresponds to the limit Va � 2ta, the contribution to the
effective Hamiltonian from H

(s1)
eff and H

(s2)
eff vanish and

thus, the total intra-ladder effective Hamiltonian becomes
the sum of H(t)

eff and H(s3)
eff (see Eqs. (14) and (19)). This is

what is exactly obtained by Mostovoy and Khomskii [10]
but with a different interpretation.

Case III: U =∞, Va � 2ta: In this case, the effective
Hamiltonian H(s1)

eff and H(s2)
eff vanish but H(s3)

eff reduces to,

H
(s3)
eff =

t2b
ta

∑
i

(
τxi + τxi+1

)(1
4
− Si · Si+1

)
, (20)

so that the total effective intra-ladder Hamiltonian be-
comes the sum of equations (14) and (20). Moreover,
since Va � 2ta, the major contribution will be from
equation (14).

Case IV: Disordered phase: In the disordered phase,
where the electrons are in the bonding states (see Fig. 2a),
we can get an estimate of the effective exchange coupling
in the effective Hamiltonian by taking the averages over
its charge (pseudo-spin) part. One can write down the ef-
fective exchange Hamiltonian (disregarding the constant
factors) as, Hexch

eff = Jexch
eff

∑
i Si · Si+1. In the present

case, we have, 〈τxi 〉 = −1/2 and 〈τyi 〉 = 0 = 〈τzi 〉 whereas
〈τxi τxi+1〉 = 1/4 and 〈τyi τ

y
i+1〉 = 0 = 〈τzi τzi+1〉. Thus, the ef-

fective exchange coupling due to the HamiltonianH(t)
eff and

H
(s1)
eff vanish, but that of H(s2)

eff and H(s3)
eff become, −2t2b

U ′+2ta

and −2t2b
V ′a+2ta

which yields Jexch
eff = 2t2b(

1
U ′+2ta

+ 1
V ′a+2ta

).
It is clear that the exchange coupling here is antiferro-
magnetic (> 0). Using the parameters mentioned in the
present work, Jexch

eff is estimated to be 0.08 eV. The ex-
pression for Jexch

eff is exactly the same (for the case Va = 0)
as obtained by Horsch and Mack [22].

Case V: Complete charge ordered phase: We can
get an estimate of the effective exchange couplings
in the completely charge ordered (zig-zag) phase (see
Figs. 2b, 2c), following the same procedure as that of
the disordered phase. Here, one has, 〈τxi 〉 = 0 = 〈τyi 〉
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0 0.5 1 1.5 2
(Va/2ta)

−10

0

10

J ef
fex
ch

  [
t b2 /t a]

Fig. 3. Variations of the effective intra-ladder exchange cou-
pling Jexch

eff in units of (t2b/ta) with respect to the parameter
(Va/2ta) (for U = ∞). Note that the perturbation expansion
breaks down at Va = 2ta.

and 〈τzi 〉 = 1/2, 〈τzi+1〉 = −1/2 whereas 〈τxi τxi+1〉 =
0 = 〈τyi τ

y
i+1〉 and 〈τzi τzi+1〉 = −1/4. Hence, the effec-

tive exchange coupling due to H(s1)
eff and H(s2)

eff vanish but
that of H(t)

eff and H
(s3)
eff survive, which ultimately leads to

Jexch
eff = −2t2b

[
1
Va
− 1

2(V ′a−2ta) −
1

2(V ′a+2ta)

]
. However, us-

ing the parameter values, it is calculated to be −0.17 eV.
In the case where U =∞ and for 0 < (Va/2ta) < 1, Jexch

eff
becomes ferromagnetic (< 0) whereas for (Va/2ta) > 1,
it is antiferromagnetic. The variation of Jexch

eff with re-
spect to the parameter (Va/2ta) is shown in Figure 3.
It is clear from the figure that there exists a minimum
in the ferromagnetic region for (Va/2ta) = 1/

√
3, where

Jexch,min
eff = −2.26 (t2b/ta) = −0.2 eV, which is quite large.

For the case of partial charge-ordering of zig-zag type,
we find that the effective intra-ladder coupling along the
leg decreases with respect to the disordered phase.

3 Inter-ladder exchange

Next, let us consider the hopping between the two nearest
neighbour ladders, which is described by the second term
of the Hamiltonian HI (see Eq. (5)), i.e.,

H inter
I = tab

∑
〈m,n〉,σ

(R†m,σLn,σ + L†n,σRm,σ). (21)

(c)(a)

(e)

(f) (g)

(d)

(b)

Fig. 4. Possible (a) disordered; (b), (c), (d), (e) completely
charge ordered (zig-zag) and (f), (g) ordered-disordered con-
figurations in between two adjacent ladders.

The effective inter-ladder coupling between the charge and
the spin degrees of freedom is derived in the same way
as has been done for the single ladder case. Since the
two-particle excited states in this case are exactly the
same as what has been done earlier, the effective inter-
ladder Hamiltonian can be written as sum of two parts,
i.e., H inter

eff = H
inter(t)
eff + H

inter(s)
eff , where the superscript

‘t’ and ‘s’ have the same meaning discussed in the previ-
ous section. The effective Hamiltonian H

inter(t)
eff is derived

to be,

H
inter(t)
eff = − t2ab

2(Va − 2ta)

×
∑
〈m,n〉

(
1
4

+
τxm + τxn

2
− 2τymτ

y
n + τm · τn

)

×
(

3
4

+ Sm · Sn
)
− t2ab

2(Va + 2ta)

×
∑
〈m,n〉

(
1
4
− τxm + τxn

2
− 2τymτ

y
n + τm · τn

)

×
(

3
4

+ Sm · Sn
)
− t2ab
Va

×
∑
〈m,n〉

(
1
4
− 2τxmτ

x
n + τm · τn

)(
3
4

+ Sm · Sn
)
,

(22)
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whereas H inter(s)
eff can be written as H inter(s)

eff = H
inter(s1)
eff +

H
inter(s2)
eff +H

inter(s3)
eff , with

H
inter(s1)
eff =

−t2ab
2(U − 2ta)

∑
〈m,n〉

(
1
4

+
τxm + τxn

2
+
τzm − τzn

2

− 2τzmτ
z
n − τxmτzn + τzmτ

x
n + τm · τn

)
×
(

1
4
− Sm · Sn

)
− t2ab

2(U + 2ta)

×
∑
〈m,n〉

(
1
4
− τxm + τxn

2
+
τzm − τzn

2
− 2τzmτ

z
n

+ τxmτ
z
n − τzmτxn + τm · τn

)
×
(

1
4
− Sm · Sn

)
− t2ab

U

∑
〈m,n〉

(
1
4

+
τzm − τzn

2
− τm · τn

)

×
(

1
4
− Sm · Sn

)
. (23)

The expression for H inter(s2)
eff is exactly the same as that

of H inter(s1)
eff except that U here is replaced by U ′. On the

other hand, H inter(s3)
eff is obtained as,

H
inter(s3)
eff =− t2ab

2(V ′a − 2ta)

×
∑
〈m,n〉

(
1
4

+
τxm + τxn

2
− 2τymτ

y
n + τm · τn

)

×
(

1
4
− Sm · Sn

)
− t2ab

2(V ′a + 2ta)

×
∑
〈m,n〉

(
1
4
− τxm + τxn

2
− 2τymτ

y
n + τm · τn

)

×
(

1
4
− Sm · Sn

)
− t2ab
V ′a

×
∑
〈m,n〉

(
1
4
− 2τxmτ

x
n + τm · τn

)

×
(

1
4
− Sm · Sn

)
. (24)

Since the derivation of the effective inter-ladder Hamilto-
nian proceeds in the same way as that of the intra-ladder
case, the limiting cases will follow the same way as has
been done before. Moreover, here also, one needs a finite
Va (but Va 6= 2ta) in deriving the effective Hamiltonian,
otherwise the perturbation becomes ill-defined for Va = 0.
Furthermore, one gets a non-zero contribution to the ef-
fective inter-ladder Hamiltonian even if U =∞.

Limiting cases and discussion

Case I: ta = 0: In this limit U ′ = U and V ′a = Va follow
naturally. Thus, H inter(t)

eff reduces to,

H
inter(t)
eff = −2t2ab

Va

∑
〈m,n〉

(
1
4

+ τzmτ
z
n

)(
3
4

+ Sm · Sn
)
.

(25)

Similarly, H inter(s1)
eff , H inter(s2)

eff and H inter(s3)
eff become,

H
inter(s1)
eff +H

inter(s2)
eff = −4t2ab

U

×
∑
〈m,n〉

(
1
4

+
τzm − τzn

2
− τzmτzn

)(
1
4
− Sm · Sn

)
, (26)

H
inter(s3)
eff = −2t2ab

Va

∑
〈m,n〉

(
1
4

+ τzmτ
z
n

)(
1
4
− Sm · Sn

)
.

(27)

The expression (26) is the same one as has been obtained
by Thalmeier and Fulde [8].

Case II: ta = 0, U = ∞: In this case, the contri-
butions from H

inter(s1)
eff and H

inter(s2)
eff vanish. The contri-

butions from H
inter(t)
eff and H

inter(s3)
eff can be combined to-

gether to yield,

H inter
eff = H

inter(t)
eff +H

inter(s)
eff = −2t2ab

Va

∑
〈m,n〉

(
1
4

+ τzmτ
z
n

)
,

(28)

which becomes independent of the spin degrees of freedom.
Case III: U = ∞, Va � 2ta: In this case, the con-

tributions from H
inter(s1)
eff and H

inter(s2)
eff vanish. Combin-

ing H inter(t)
eff and H inter(s3)

eff , the spin-dependence drops out
and one obtains,

H inter
eff = H

inter(t)
eff +H

inter(s3)
eff =

t2ab
4ta

∑
〈m,n〉

(τxm + τxn )

− t2ab
Va

∑
〈m,n〉

(
1
4
− 2τxmτ

x
n + τm · τn

)
. (29)

Case IV: Disordered phase: Following the proce-
dure already mentioned for the intra-ladder case, we can
get an estimate of the effective exchange coupling be-
tween the nearest neighbour ladders (see Fig. 4a) by tak-
ing the averages over the charge part in the effective
Hamiltonian. Here also, one can write down the effec-
tive Hamiltonian (disregarding the constant factors) as,
H inter,exch

eff = (J inter,exch(t)
eff +J inter,exch(s)

eff )
∑
〈m,n〉 Sm ·Sn =

J inter,exch
eff

∑
〈m,n〉 Sm · Sn. In the present case, one has,

〈τxm〉 = 〈τxn 〉 = −1/2 and 〈τym〉 = 〈τyn〉 = 0 = 〈τzm〉 = 〈τzn〉



D. Sa and C. Gros: Effective charge and spin Hamiltonian for α′-NaV2O5 427

whereas 〈τxmτxn 〉 = 1/4 and 〈τymτyn〉 = 0 = 〈τzmτzn〉. Thus,
the effective exchange coupling which is due to H inter(t)

eff ,
H

inter(s1)
eff , H inter(s2)

eff and H inter(s3)
eff is given as, J inter,exch

eff =
−t2ab

2

[
1

(Va+2ta) −
1

(U+2ta) −
1

(U ′+2ta) −
1

(V ′a+2ta)

]
. The ex-

change coupling here is antiferromagnetic and is estimated
to be (J inter,exch

eff /t2ab) = 0.39. For Va = 0, it gives rise to
the same expression as obtained by Horsch and Mack [22].

Case V: Complete charge ordered phase: Here, we
have four different completely charge ordered (zig-zag)
phase depending on the state through which we compute
the averages over the charge part of the effective Hamil-
tonian. In all these cases, one has, 〈τxm〉 = 〈τxn 〉 = 0 =
〈τym〉 = 〈τyn〉 and 〈τxmτxn 〉 = 0 = 〈τymτyn〉. In addition to
this, one has,

(i) 〈τzm〉 = 1/2, 〈τzn〉 = −1/2 and 〈τzmτzn〉 = −1/4,
where the averages are due to the state R†m,αL

†
n,β|0〉

(Fig. 4b). The effective exchange coupling for H inter(t)
eff

and H
inter(s3)
eff vanish but that of H

inter(s1)
eff and

H
inter(s2)
eff are finite which gives rise to, J inter,exch

eff =
t2ab
[

1
2(U−2ta) + 1

2(U+2ta) + 1
U + 1

2(U ′−2ta) + 1
2(U ′+2ta) + 1

U ′

]
.

The exchange coupling here is antiferromagnetic and
is estimated to be (J inter,exch

eff /t2ab) = 1.42. For ta = 0,
it gives rise to usual super-exchange, i.e. J inter,exch

eff =
4t2ab/U .

(ii) 〈τzm〉 = −1/2, 〈τzn〉 = 1/2, and 〈τzmτzn〉 =
−1/4, where the averages are taken over the state
L†m,αR

†
n,β|0〉 (Fig. 4c). In this case, J inter,exch(t)

eff = 0 =

J
inter,exch(s)
eff which ultimately corresponds to the case
J inter,exch

eff = 0.
(iii) 〈τzm〉 = 〈τzn〉 = 1/2 and 〈τzmτzn〉 = 1/4, where the av-

erages here are due to the state R†m,αR
†
n,β |0〉 (Fig. 4d).

The effective exchange couplings for H
inter(s1)
eff and

H
inter(s2)
eff vanish. Thus, J inter,exch

eff is obtained from
the contribution due to H

inter(t)
eff and H

inter(s3)
eff which

is, J inter,exch
eff = −t2ab

2

[
1

2(Va−2ta) + 1
2(Va+2ta) + 1

Va
−

1
2(V ′a−2ta) −

1
2(V ′a+2ta) −

1
V ′a

]
. The exchange coupling

here is antiferromagnetic and is estimated to be
(J inter,exch

eff /t2ab) = 2.8. It vanishes for U = ∞ as well
as for ta = 0.

(iv) 〈τzm〉 = 〈τzn〉 = −1/2 and 〈τzmτzn〉 = 1/4, where the
averages are taken over the state L†m,αL

†
n,β |0〉 (Fig. 4e).

Here, the effective exchange coupling turns out to be
the same as that of (iii).

Case VI: A phase with one ladder completely charge
ordered and the nearest neighbour disordered: In this case,
we have two possibilities, again depending on the state
through which one computes the averages over the charge
part in the effective Hamiltonian. In both the cases, one
has, 〈τxm〉 = 0 = 〈τym〉, 〈τyn〉 = 0 = 〈τzn〉 and 〈τxmτxn 〉 = 0 =
〈τymτyn〉 = 〈τzmτzn〉. Besides, one has,

(i) 〈τzm〉 = 1/2, 〈τxn 〉 = −1/2 and 〈τzmτxn 〉 = −1/4, where
the averages are taken over the state R†m,αa

†
n,β|0〉

(Fig. 4f). All the effective exchange couplings in this
case turn out to be non-zero and hence J inter,exch

eff

is obtained as, J inter,exch
eff = −t2ab

2 [ 1
2(Va+2ta) + 1

2Va

− 1
(U+2ta) −

1
U −

1
(U ′+2ta) −

1
U ′ −

1
2(V ′a+2ta) −

1
2V ′a

].
(ii) 〈τzm〉 = −1/2, 〈τxn 〉 = −1/2 and 〈τzmτxn 〉 = 1/4

where the averages are due to the state L†m,αa
†
n,β |0〉

(Fig. 4g). The effective exchange coupling which
is due to H

inter(t)
eff and H

inter(s3)
eff (the contributions

due to H
inter(s1)
eff and H

inter(s2)
eff vanish) is given by,

J inter,exch
eff = −t2ab

2

[
1

2(Va+2ta) + 1
2Va
− 1

2(V ′a+2ta) −
1

2V ′a

]
.

In both of the above mentioned cases, the exchange
coupling becomes antiferromagnetic and is estimated to
be (J inter,exch

eff /t2ab) = 2.26 for case (i) and 1.65 for (ii).
However, it vanishes in both cases for U =∞ irrespective
of whether Va � 2ta or Va � 2ta.

4 Discussion and conclusion

We have derived the effective spin-charge Hamiltonian
for α′-NaV2O5 for both intra-ladder and inter-ladder ex-
change. We find a rich structure as a function of possible
realization of the microscopic parameters. We have found
several, in part unexpected, results.

(i) The effective inter-ladder magnetic exchange in be-
tween two given rungs of a charge-ordered and a
charge-disordered ladder changes (only) by a factor of
two when the charge-density-wave is shifted by a lat-
tice constant along a (compare Figs. 4f and 4g).

(ii) There are novel terms of type τzmτ
x
n in the effective

charge-charge inter-ladder interaction. These terms,
which are however rather small in magnitude, could
in principle stabilize a mixed charge-order configura-
tions like the one illustrated in Figures 4f and 4g.

As a consequence of (i), the proposed frustrated spin-
cluster model by de Boer et al. [15] seems to be unlikely,
since the coupling in between the one-dimensional spin-
cluster chains of reference [15] should be, as a consequence
of (i), rather strong. This conclusion is consistent with
a recent study of the frustrated spin-cluster model by
DMRG and a cluster-operator theory [17].

Let us note that the change in sign of the effective
intra-ladder magnetic exchange shown in Figure 3 cannot
be described accurately by a perturbation expansion in
tb. Near to the singularity at Va = 2ta the perturbation
expansion breaks down and the effective intra-ladder spin-
Hamiltonian becomes long-ranged.

Ultimately, the reason for the ferromagnetic intra-
ladder coupling for the zig-zag ordering found in the
above calculation lies in the fact that the charge-ordered
state is not the ground-state of H0. In fact, the charge-
ordered state would be stabilized by H ′0 in the case of
a large effective inter-rung Coulomb-coupling V ′b − V ′′b
(see Eq. (13)). For large values of V ′b − V ′′b � 2ta, the
perturbation expansion would yield (e.g. in mean-field
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approximation for H ′0) an antiferromagnetic intra-ladder
spin-spin coupling. We did not show this calculation here,
since our estimated value for the inter-rung Coulomb re-
pulsion V ′b −V ′′b ≈ 0.1 eV is about one-order of magnitude
too small in order to do the job. We therefore believe that
this small value of V ′b − V ′′b indicates (a) the importance
of elastic effects for the stabilization of the observed phase
transition at Tc = 34 K and (b) that the degree of charge
ordering is far from complete. This is consistent with the
proposal of about 20% charge ordering [11].

The authors would like to thank R. Valent́ı, J.V. Alvarez, F.
Capraro and K. Pozgajcic for several discussions and critical
reading of the manuscript.
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